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1. Introduction.   
This paper offers a comparison between two decision rules for use when uncertainty is 
depicted by a non-trivial, convex2 set of probability functions Γ.  This setting for uncertainty 
is different from the canonical Bayesian decision theory of expected utility, which uses a 
singleton set, just one probability function to represent a decision maker’s uncertainty.  
Justifications for using a non-trivial set of probabilities to depict uncertainty date back at 
least a half century (Good, 1952) and a foreshadowing of that idea can be found even in 
Keynes’ (1921), where he allows that not all hypotheses may be comparable by qualitative 
probability – in accord with, e.g., the situation where the respective intervals of probabilities 
for two events merely overlap with no further (joint) constraints, so that neither of the two 
events is more, or less, or equally probable compared with the other. 
 
Here, I will avail myself of the following simplifying assumption:  Throughout, I will avoid 
the complexities that ensue when the decision maker’s values for outcomes also are 
indeterminate and, in parallel with her or his uncertainty, are then depicted by a set of 
(cardinal) utilities.  That is, for this discussion, I will contrast two decision rules when the 
decision maker’s uncertainties, but not her/his values are indeterminate. 
 
 
The more familiar decision rule of the pair under discussion, Γ-Maximin3, requires that the 
decision maker ranks an option by its lower expected value, taken with respect to the convex 
set of probabilities, Γ, and then to choose an option whose lower expected value is 
maximum.  This decision rule (as simplified by the two assumptions, above) was given a 
representation in terms of a binary preference relation over Anscombe-Aumann horse 
lotteries (Gilboa-Schmeidler, 1989), has been discussed by, e.g., Berger (1985, §4.7.6) and 
recently by (Grunwald and Dawid, 2002), who defend it as a form of Robust Bayesian 
decision theory.   
 
The Γ-Maximin decision rule creates a preference ranking of options independent of the 
alternatives available: it is context independent in that sense.  But Γ-Maximin corresponds to 
a preference ranking that fails the so-called (von Neumann-Morgenstern’s) “Independence” 
or (Savage’s) “Sure-thing” postulate of Bayesian Expected Utility theory.   
 
The decision rule that I shall here contrast with Γ-Maximin, called E-admissibility (‘E’ for 
“expectation”) I attribute to I. Levi (1974, 1980).    E-admissibility constrains the decision 
maker’s admissible choices to those feasible options that are Bayes for at least one 
probability P ∈  Γ.  That is, given a choice set S of feasible options, the option O ∈  S is E-

                                                 
1 This research is supported by NSF Grant DMS-0139911. 
2  The issue of convexity is also controversial.  See Seidenfeld, Schervish, and Kadane (1995) for a 
representation of partially ordered strict preferences that does not require convexity, and for reasons why 
sometimes convexity is to be avoided.  Rebuttal is presented by Levi (1999,  section 7). 
3 When outcomes are cast in terms of a (statistical) loss function, the rule is then Γ-Minimax: rank options by 
their maximum expected risk and choose an option whose maximum expected risk is minimum. 
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admissible on the condition that, for at least one P ∈  Γ, O maximizes expected utility with 
respect to the options in S.4   
 
Savage (1954, §7.25) defended a precursor to this decision rule in connection with 
cooperative group decision making.  Variants to this rule have been the subject of 
representation theorems by, e.g., Giron and Rios (1980) and Se., Sc., and K. (1990, 1995). 
 
E-admissibility does not support an ordering of options (real-valued or otherwise), so that it 
is inappropriate to characterize E-admissibility by a ranking of choices, independent of the 
set S of feasible options.  However, the distinction between options that are and are not E-
admissible does support the “Independence” postulate.  For example, if neither option A or 
B is E-admissible in a given decision problem, then their convex combination, the mixed 
option αA ⊕   (1-α)B  (0 ≤ α ≤ 1) likewise is E-inadmissible when added to the same set of 
feasible options, as is evident from the basic Expected Utility property that the utility of a 
convex combination is the convex combination of the separate utilities. 
 
To foreshadow the principal theme of my remarks here, it is that “Independence” or “Sure-
thing” reasoning, rather than the “Ordering” postulate which regulates coherent hypothetical 
preferences, relating to conditional probabilities.  It is my contention, then, that E-
admissibility has the normative advantage over Γ-Maximin, particularly with respect to 
decision problems that involve hypothetical preference. 
 
In a general setting, the two rules are not equivalent.  Here is a heuristic illustration of that 
difference. 

Example 1: Consider a binary-state decision problem, Θ = {E, Ec}, with three 
feasible options.  Option A yields an outcome worth 1 utile if state E obtains and an 
outcomes worth 0 utiles if E fails, i.e. if Ec obtains.  Option B is the mirror image of 
A and yields an outcome worth 1 utile if Ec obtains and an outcomes worth 0 utiles 
otherwise, i.e. if E obtains.  Option C is constant in value, yielding an outcome worth 
0.4 utiles regardless whether E or Ec obtains.   

Figure 1, below, graphs the expected utilities for these three acts.  Let Γ = {P: .25 ≤ P(E) ≤ 
.75}.  The surface of Bayes-solutions is highlighted in red.   
 
The expected utility for options A and B each has the interval of values [.25, .75], whereas C 
of course has constant expected utility of .4.  From the choice set of these three options {A, 
B, C} the Γ-Maximin decision rule determines that C is (uniquely) best, assigning it a value 
of 0.4, whereas A and B each has a value of 0.25.  By contrast, under E-admissibility, only 
the option C is inadmissible from the trio. Either of A or B is E-admissible. The rules are 
diametrically opposed in what they allow in this decision problem.  
 
 

                                                 
4 Levi’s decision rule is lexicographic, with E-admissibilty the first tier.  He allows a secondary “security” 
criterion to be employed in selecting from among the E-admissible options.  For instance, one might maximize 
the minimum expected value among the E-admissible options.  In Example1, that does not further narrow the 
admissible options, however.  The evident symmetry between options A and B suggests that only a rule for 
“picking” rather than “choosing” (see Morgenbesser and Ullmann-Margalit, 1977) will resolve that problem. 
5 Savage’s analysis of the decision problem depicted by Figure 1, p. 123, and his rejection of option b, p. 124 is 
the key point.  
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          FIGURE 1 

 
•  Aside on boundaries of the convex sets. 
I note in passing there are mathematical niceties in the delicate questions about the faces 
of the convex sets of probabilities, as to which are open and which are closed, and that 
these affect the comparison between Γ-Maximin and E-admissibility.  To illustrate, 
consider first a coin that is thought to biased for heads, but by no known amount.  That 
uncertainty is represented by the half closed interval of probabilities for the coin landing 
heads, (0.5, 1.0].  If the coin is thought only not to be biased for tails, that is represented 
by the closed interval of probabilities, [0.5, 1.0].  The difference is with respect to the 
closure of the convex set of probabilities.  This makes a difference between the two 
decision rules under discussion here, as illustrated next.   

 
Let money be linear in utility at modest stakes.  Consider a choice between a fair money 
wager on heads (at modest stakes) and the status quo.  The Γ-Maximin rule uses the 
infemum of expected utilities to rank order options.  Both options (betting and 
abstaining) have the same lower expectation (0) under either set of probabilities.  
However, when uncertainty is represented by the half-open interval of probabilities, 
when the coin is thought to be biased for heads, the even money bet has higher expected 
value than does abstaining for each probability in the set.  Hence, by E-admissibility, 
betting is strictly preferred in that case.  When the closed interval of probabilities 
represents the decision maker’s uncertainty, both options are E-admissible, as they have 
equal expected value for the case when P(Heads) = ½.   Thus, between the two rules, 
only E-admissibility distinguishes the two different epistemic cases.   
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By similar reasoning, we see that Γ-Maximin, just as with ordinary Minimax theory, 
permits weakly dominated (so-called inadmissible) options, even when the set of 
dominating states has only positive probability for each element of Γ.  

 
Example 1 (modified):  Increase the uncertainty for E so that Γ = {P: 0.0 < P(E) < 
1.0}. Contrast the constant option C with the composite act [A+C] where [A+C](E) = 
1.4 and [A+C]( Ec) = 0.4.  Then C and [A+C] have the same Γ-Maximin ranking 
(0.4), this despite that fact that C is, in the usual sense, inadmissible against the 
alternative [A+C], and is E-inadmissible against it as well.  Note that the Bayes 
model for that supports the Γ-Maximin indifference between  
 
Here is the same phenomenon formulated in terms of risk 
Example 1 (continued):  Consider the expectation, given a parameter as the criterion 
to be maximized (or to be minimized, when formulated as risk, i.e., when utility is 
given by a loss function).  Let the half open interval Θ = (0.5, 1.0] be the parameter 
space for the Bernoulli parameter θ, the chance for heads on a flip, and let Γ be the 
set of all probabilities over the parameter space.  Then, for each possible value of the 
parameter, the even money bet on heads has higher expected value (better risk) than 
does the status quo.  Each element of Γ is a convex combination of these extreme 
points.  Nonetheless, Γ-Maximin ranks the bet on head indifferent with the status 
quo.  The only Bayes models for this indifference require a finitely additive 
probability over the parameter space, agglutinated at the (missing) value 0.5.  That 
is, Nature’s Minimax strategy here is a limit of proper (Bayes) “priors” over the 
parameter θ.   
Last, note that under Γ-Maximin there is no value for this decision in the information 
of additional (iid) flips of the coin.  That is, regardless the number of iid trials that 
may be observed, the even money bet on heads remains indifferent under Γ-Maximin 
to the status quo.  This anomalous valuation for new data is examined in greater 
detail, below. 

 
 
2. More about ΓΓΓΓ-Maximin.   
Because Γ-Maximin is a species of more general Minimax theory, it depends for its best 
results on the familiar assumption that the option space is convex, i.e., that mixed strategies 
are available.  Let M(S) be the closure of the feasible option set S under mixtures. The 
following is well known and follows immediately from basic Minimax theory, e.g., Casella 
and Berger (1990, chapter 10). 
 

Result 2.1: Assume that M(S) is finitely generated, that Γ is closed and convex, and 
that its elements have a common, finite support set Θ including all the extreme (0-1) 
distributions on Θ. Then, a Γ-Maximin option exists and it is Bayes for some element 
of Γ. 

 
Example 1 (continued): Let D = .5A ⊕  .5B  be the mixed strategy, which with 
probability ½ is A and with probability ½ is B, say on the flip of a fair coin: Heads 
yields A and Tails yields B.  D is an equalizer strategy, with a constant expected 
value 0.5. It is the Γ-Maximin solution from M(S) with respect to the set of all 
probabilities Γ* on the two-state partition Θ, and it is Bayes against the minimax 
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“prior” P(E) = P(Ec) = .5.  Since this uniform “prior” belongs to the set Γ = {P: .25 ≤ 
P(E) ≤ .75}, D is the Γ-Maximin solution to the decision problem with respect to 
M(S) as well.  (Let Dr be the reverse mixture, Heads yields B and Tails yields A, 
using the same flip of a fair coin.  Dr will be useful for a sequential decision 
problem, below.)  

 
Of course, though the Γ-Maximin solution from M(S) is Bayes (and hence is E-admissible) 
the Γ-Maximin ranking of options from M(S) does not have a Bayes model.  This is evident 
as Γ-Maximin (just as Minimax theory, generally) does not satisfy the Mixture Dominance 
(so-called “Betweeness”) principle, which is a logical consequence of Independence and 
Ordering.   
 
Expressed in terms of a preference ordering, ≤, the Mixture Dominance postulate requires:  

Mixture Dominance:  For each pair of options {A, B}, and for each 0 ≤ α ≤ 1,   
Min{A, B} ≤  αA ⊕   (1-α)B  ≤  Max{A, B}. 

Where ‘⊕ ’ denotes convex combination, e.g., the lottery mixture of two options. 
 

In Example 1, we have that under Γ-Maximin  0.25 ≈ A, B < D ≈ 0.5, and Mixture 
Dominance fails as D is the (α = .5) convex combination of A and B. 
 
It is sometimes alleged that preference orderings which are not Bayesian are not coherent, in 
the technical sense that they admit a Dutch Book. That is incorrect.  Γ-Maximin preferences 
are immune to a Book.  They do not lead to a sure loss under the rules of Dutch Book play.   
 
Call an option Γ-favorable if it is ranked by Γ-Maximin over the status-quo, 0 point.   

Result 2.2:  No finite combination of Γ-favorable options can result in a Dutch 
Book. 
Proof: Reason indirectly.  Suppose that the sum of a finite set of Γ-favorable 
gambles is negative in each state of a finite partition.  Choose an element P from Γ.  
The probability P is a convex combination of the extreme (0-1) probabilities, 
corresponding to a convex combination of the finite partition by states. The 
expectation of a convex combination of probabilities is the convex combination of 
the individual expectations.  This makes the P-expectation of the sum of the finite set 
of Γ-favorable options negative.  But the P-expectation of the sum cannot be 
negative unless at least one of the finitely many gambles has a negative P-
expectation.  Then that gamble cannot be Γ-favorable, since P is an element of Γ. 

Thus, (unconditional) Γ-Maximin preferences are not subject to sure loss. 
 
 
However, the same cannot be said about hypothetical preferences, particularly as those 
relate to sequential choice problems.  For the current investigation of Γ-Maximin and its 
comparison with E-admissibilty, I want to highlight how Γ-Maximin addresses hypothetical 
preferences and, through hypothetical preferences, how it values new information.  By an 
hypothetical preference I mean a preference relation with respect to an augmented body of 
evidence, a preference given some new information, Y = y, not already known.   
 
Hypothetical preference, in this sense, is not to be confused with unconditional, called-off 
preference, given Y = y, which, for example, is how Savage defines conditional preference.  
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For Savage (or deFinetti) conditional preference, given Y = y, is a comparison using 
unconditional preference, among acts all of which agree on outcomes for states Y ≠ y.  
 
Instead, hypothetical preference, given Y = y, compares acts that are defined with respect to 
a quotient algebra obtained by equating Y ≠y with the impossible event.  In Savage’s theory, 
what I am calling hypothetical preference, given Y = y, corresponds to a comparison 
between partially defined (unconditional) acts, partial functions defined only for states 
consistent with the new information, Y = y. 
 
Elsewhere (Seidenfeld, 1988), I have shown that each (real-valued) decision rule that 
satisfies the Ordering postulate but which fails Independence is not sequentially coherent.  
That is, in extensive form (i.e., in sequential) decisions, choices are not invariant over which 
preferentially indifferent outcomes appear at the terminal choice points.  From what is 
shown above (where Γ-Maximin fails Mixture Dominance), this result applies to Γ-Maximin.  
Moreover, by contrast, E-admissibility is sequentially coherent. 
 
Choice rules that obey the Ordering assumption are supposedly context insensitive in that it 
is sometimes argued that coherent orderings (those free from Dutch Book) equate extensive 
and normal form decisions.  But this is not true of Γ-Maximin because of the way it 
addresses hypothetical preference.   
 

Seqential Example 1 (continued): Construct a sequential decision problem 
involving these options from Example 1, as follows.  At the initial choice node, there are 
four options, the first three of which are terminal and the third is sequential:  

  (1)  the status quo – a terminal option 
  (2a)  the opportunity to purchase D at a cost of 0.4 units – a terminal option. 
  (2b) the opportunity to purchase Dr at a cost of 0.4 units – a terminal option. 
(3) the opportunity to learn the outcome of the mixing variable {Heads, Tails}, 

and then either to purchase D or Dr at a cost of 0.35 units or to receive 0.05 
units outright – a sequential option involving hypothetical preferences. 

 
The figure, below, provides a schematic illustration of this choice problem. 
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A Sequential Decision Involving the Value of New Information 
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Recall that, as evaluated by Γ-Maximin (or by E-admissibility), at the initial node D (or Dr) 
has a constant value of 0.5 units. Thus, either option (2a) or (2b) is a Γ-Maximin favorable 
(and E-admissibility favorable) option, with a positive value of 0.1 unit, as assessed at the 
initial choice point.  Hence, option (1) is Γ-inadmissible (and E-inadmissible), being strictly 
dispreferred to options (2a) and (2b). 
 
What is the decision maker’s ranking (at the initial node) of the sequential option (3)?   
Given the outcome that the mixing coin lands Heads, act D is the act A and act Dr is the act 
B, as acts are here function from states to (utility) outcomes.   
 
Given that the mixing coin lands Heads, the hypothetical Γ-Maximin ranking of D (and of 
Dr) drops to 0.25 units, so that the prospective trade of 0.35 units to purchase D (or Dr) has 
a Γ-Maximin hypothetical value of  –0.10 units, which is less than the (hypothetical) value 
of the Γ-Maximin favorable alternative to receive 0.05 units outright.  That is, the option to 
purchase D (or Dr) at a cost of 0.35 units is hypothetically unfavorable given that the coin 
lands Heads, and the Γ-Maximin decision maker will opt, instead for the gain of 0.05 units 
at that terminal node of the sequential decision.  By symmetry, the option to purchase D (or 
Dr ) at a cost of 0.35 units is hypothetically Γ-Maximin unfavorable given that the coin 
lands Tails, and the Γ-Maxinim decision maker will opt, instead for the sure gain of 0.05.  
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Thus, for the Γ-Maximin’er, sequential option (3) reduces to a sure gain of 0.05 units.  But 
that amount is dispreferred to option (2a) or (2b) which is each valued (indifferently) at +0.1 
units.  Therefore, faced with this sequential decision problem the Γ-Maximin decision maker 
will choose option (2). 
 
What is surprising about the Γ-Maximin ranking of these three options is that the sequential 
option (3) is itself equivalent to paying the decision maker 0.5 units at the initial node in 
order first to learn the outcome of the mixing variable {Heads, Tails}, and then to present 
him with same three terminal choices as among options (1), (2a), and (2b).  That is, in 
mandating a higher value for option (2a) or (2b) over option (3), Γ-Maximin puts a negative 
value on the new data of the mixing variable.  The hypothetical preferences associated with 
Γ-Maximin disvalues cost-free (relevant) information!6 
 
E-admissibility recommends differently.  Under the sequential option (3), the hypothetical 
preferences (given either Heads or Tails) follows the unconditional preferences for the 
choices in Example 1.  That is, the triple of the three options {+.05, D-0.35, Dr-0.35 } has a 
hypothetical E-preference worth no less than +0.15.  Moreover, the first of these (3.1) is E-
inadmissible.  Hence, using E-admissibility (with or without  the security condition), we 
have that the sequential option (3) is uniquely E-admissible. 
 
In short, because Γ-Maximin undervalues the triple of options in Example 1 (as judged by E-
admissibility), that decision rule produces a negative value for the (ancillary) mixing datum 
when that information collapses risk back to uncertainty. 
 
Moreover, this sequential decision problem does not receive the same Γ-Maximin solution 
when put into normal form.  Then, sequential option (3) expands to form 9 new terminal 
options.  It is obvious that the Γ-Maximin solution to this normal form problem, involving 6 
options, is the Γ-favorable option to purchase D (or Dr) at a cost of only 0.35 units, with a 
net gain of 0.15 units.  Of course, in the extensive form of the decision problem, this is not a 
Γ-Maximin feasible alternative, viewed from the initial node. 
   
 
In Example 1, A [or respectively, B] is a called-off option relative to the status quo, called 
off in case state Ec [respectively, E] fails.  The failure of the Independence postulate, 
through the failure of Mixture Dominance, results in a sequentially incoherent treatment of 
hypothetical preferences, as shown above.  Next, I pursue this theme in connection with 
failures of the law of iterated expectations for bounded random variables:  

E [ E [X | Y] ] = E [X]. 
 
In a recent, and very interesting paper, Grunwald and Dawid (2002, §6) show that for a 
variety of proper scores (so that the decision problem is cast in terms of a loss function) Γ-
Minimax solutions are equivalent to using Bayes’ decisions against a Maximum Entropy 
distribution (as a worst-case “prior”) and, generally, against minimum Kullbach-Lieber [K-
L] shifts.  But we have just seen that Γ-Maximin induces hypothetical preferences in 
violation of Mixture Dominance principle. This can be linked, via the Grunwald and Dawid 
results, to counterpart incoherence in the MaxEnt principle, and in the principle of making 
minimum K-L shifts.  The following two examples illustrate the phenomenon. 
                                                 
6 See (Herron, Seidenfeld, and Wasserman, 1997) for analysis of such cases of “dilation” of uncertainty. 
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Example 2 (Shimony, 1973).  Let X be a simple random variable with possible 
values {xi: i = 1, …, n} such that one of them is the average value.   
That is, for one k, 1 ≤  k ≤ n,   xk = x  = ∑i xi/n. 

•  The “apriori” MaxEnt distribution P0 for X is uniform P0(X = xi) = 1/n.   So 
the “apriori” expectation for X is E0[X] = x . 

•  Using the “linear” constraint C = E1[X] = c, with minX  ≤ c ≤ maxX  the 
MaxEnt distribution P1 for X that satisfies constraint C, also satisfies  

� P1(X = xk) < 1/n,  if c ≠ x  
� P1(X = xk) = 1/n,  if c = x . 

Understanding P1(X ) as a conditional probability P0(X | C), then in order to satisfy 
the law of iterated expectations E0 [E0 [X | C] ] = E0 [X], we must have that  

� P0(C = x ) = 1, 
which is a degenerate Bayes model that requires the constraint to be constant, almost 
surely. 

 
Figure 2, below, illustrates this result for the case of a three sided die, X = {1, 2, 3}, using 
Barycentric coordinates.  The concave function is the graph of the MaxEnt solutions P1 for 
the outcome of the die, given the constraint C of the new P1-average for X.  It is evident that 
the unique Bayes’ model for this application of MaxEnt is the point-mass probability P0 that 
assigns probability 1 to the die being fair.   
 
Also shown, for comparison, is the Bayes solution using a uniform “apriori” probability P0 
over the simplex of all possible die loadings, for which P0 of X is, of course, the uniform 
distribution: P0(X = i) = 1/3, i = 1, 2, 3.    Then (marginal) conditional probability  
P0(X | C= c) is the inverted-V function. 
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FIGURE 2 
 
Next, I give an illustration of the same anomaly that applies to all instances of the principle 
of Minimum K-L shifts.   
 

Example 3 (Seidenfeld, 1987):  Partition the space into three disjoint, nonempty 
events {E1, E2, E3} and let P0 be any probability distribution over these.  Consider 
the “linear” constraint of a new odds ratio for E1 to E2, P1(E1) / P1(E2) = α/(1-α).  
This takes the form of a linear constraint, using the deFinetti’s called-off wager on 
E1 to E2, as follows.   
Define the random variable Yα by,  

Yα(Ei) =  -(1-α)  for i =1 
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   =      α  for i = 2 
   =      0  for i = 3. 
 
Then set C = cα as the condition that E1[Yα] = 0.   
It follows that the minimum K-L shift from P0 to P1 satisfies: 

� P1(E3) > P0(E3)  if P0(E1) / P0(E2) ≠ α/(1-α) 
�  P1(E3) = P0(E3)  if P0(E1) / P0(E2) = α/(1-α) = c 0α  

Then, just as in Example 2, in order to satisfy the law of iterated expectations  
E0 [E0 [E3 | C] ] = E0 [E3], we must have that  

� P0(C = c 0α ) = 1, 
which is a degenerate Bayes model that requires the constraint to be constant, almost 
surely. 
 

Figure 3, below, illustrates this result for the case of a three sided die, X = {1, 2, 3}, again 
using Barycentric coordinates.  P0 is taken to be the uniform distribution over the three 
events.  The concave function is the graph of the minimum K-L shift to P1 for the constraint 
C of the new odds ratio P1(E1) / P1(E2) = α/(1-α).  It is evident that the unique Bayes’ 
model for this application of MaxEnt is the point-mass probability P0 that assigns 
probability 1 to the die being fair.   
 
Also shown, for comparison, is the Bayes solution using a uniform “prior” probability P0 
over the simplex of all possible die loadings, for which P0 of Ei is, of course, the uniform 
distribution: P0(E1) = 1/3, i = 1, 2, 3.    Then the (marginal) conditional probability  
P0(Ee | C= c) = 1/3 is constant, as the odds ratio, C, is irrelevant to E3. 
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FIGURE 3 
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Based on the results of Grunwald and Dawid (2002), Examples 2 and 3 illustrate how Γ-
Minimax provides assessments of hypothetical preferences that violate the law of total 
probability -- unless the principle is made into a degenerate Bayes model – a model in which 
(almost surely) learning is precluded. 
 
Next, I offer additional contrast with E-admissibility. 
 
3. More about E-admissibility. 
3.1 Context sensitivity.  E-admissibility liberalizes the canonical Bayesian Expected Utility 
(EU) decision theory by sacrificing “Ordering” in order to preserve “Independence.”   That 
move presents an operationally distinct liberalization of canonical Bayesian theory than does 
Γ-Maximin, as we saw in Example 1.   However, just as with a set of Γ-Maximin favorable 
options, and for the same reasons, a finite set of E-admissible favorable options cannot 
result in a Book.  (An option is E-admissible favorable if it is strictly preferred according to 
E-admissibility over the status quo, that is, if the status quo is E-inadmissible in a take-it-or-
leave-it pairwise choice.) 
 
The brief analysis that follows examines more closely the extent to which “Ordering” fails 
when E-admissibility is applied and how that leads to choices in sequential choices that 
differ from Γ-Maximin.  For this purpose, I rely on Sen’s (1977) classification of choice 
rules, which follow next. 
 
Let C(S) be a choice rule applied to a feasible set of options S.  Assume that the choice 
function is well defined, i.e., if S ≠ ∅  then ∅  ≠ C(S) ⊆  S.   
 
Given a choice function C(•••• ) define the (weak) preference relation ≤C  over pairs of options, 
by the condition:  

A ≤C B if and only if there exists a feasible set S, with B ∈  C(S) and A ∈  S. 
 

Given a (complete and reflexive) weak preference relation ≤ over pairs of options, define the 
binary choice function C≤ (S) based on ≤ by the condition: 
 B ∈  C≤ (S) if and only if B ∈  S and for each A ∈  S, A ≤ B. 
Third, call a choice function C(•••• ) normal if its weak preference relation ≤C regenerates itself 
through C≤C

.  That is, C≤C
(S) = C(S), applied to all feasible sets, S. 

 
Sen shows (1977, p. 65) that a choice function is normal and generates an ordering if and 
only if it satisfies the following two of properties. 
 

Property αααα:  If A ∈  S ⊆  S′ and if A ∈  C(S′), then A ∈  C(S). 
 

Property ββββ:  Let{A, B} ⊆  S ⊆  S′.  If {A,B} ⊆  C(S) and {A,B} ⊆  S′, then A ∈  C(S′)  
if and only if B ∈  C(S′). 
 

Moreover, he shows (1977, p. 64) that a choice function is normal if it satisfies Property α 
and the following  
 Property γγγγ:  Let M = {S} be a class of feasible sets.  If A ∈  C(S) for each S∈  M,  

then A ∈  C(∪ M). 
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Consider two variations of the E-admissibility principle: first without and second with a 
supplemental consideration for choosing among E-admissible options.   In order to simplify 
the contrast with Γ-Maximin, let the supplemental consideration (what Levi (1980) calls a 
“security” rule) be to choose from among those E-admissible options any that maximizes 
minimum expectations.  The following are straightforward: 
Results:  

3.1 E-admissibilty with no supplemental “security” consideration satisfies Property α 
but fails Properties β and γ.   
3.2. E-admissibility supplemented by a Γ-maximin “security” rule fails all three 
Properties. 

Proof:   
3.1 That E-admissibility (without security considerations) satisfies Property α is 
immediate. Specifically, if A ∈  C(S′) then with respect to some P ∈ Γ , A maximizes 
expected utility over all options in S′.  Then with respect to the same P ∈ Γ , A maximizes 
expected utility over all options in S ⊆  S′ on the assumption that A ∈  S.   
For the remainder of the proof, use Example 1 to reason as follows. 

•  To see that Properties β fails, observe that both options A and C are E-admissible 
in a pairwise choice between them.  However, upon adding option B, option C is 
E-inadmissible from the triple {A,B,C}, while A remains admissible.. 

•  To see that Property γ fails note, from what was just shown, that option C is E-
admissible from each of the pairs of feasible sets {A,C} and {B,C}; however it is 
E-inadmissible from the feasible set of their union {A,B,C}. 

3.2 When E-admissibility is supplemented by a Γ-maximin “security” rule. 
•   Property α fails by noting that A is admissible from the triple of options 

{A,B,C}, but C alone is admissible from the pair {A,C}. 
•  Properties β and γ fail in the same settings illustrated in 2.1. 

By contrast, the Γ-Maximin choice rule satisfies all three properties, since it assigns each 
option a real-valued rank, independent of any other feasible options, and the reals are simply 
ordered by magnitude. 
 
Thus, the price for adopting E-admissibility (in either version) as the decision rule is to 
introduce context sensitivity into non-sequential decision analysis that is not present when 
binary choices suffice to determine the choice function, as is the case with a normal decision 
rule (such as Γ-Maxmiin) that satisfies Ordering.   This context sensitivity will also display 
itself in a general, non-equivalence of extensive form (sequential) decisions and their normal 
form (non-sequential) versions, just as with Γ-Maximin.    
 
However, the context sensitivity of the E-admissibility choice rule, even in sequential 
decisions, does not lead to failures of the law of total probability, as happens in MaxEnt and 
Minimum K-L shifts (as in Examples 2 and 3), which are the decision theoretic duals to the 
Γ-Maximin rule.  The reason that E-admissibility does not lead to such failures is, simply, 
because its hypothetical decisions always apply Bayes’ decision rule to the (convex) set of 
conditional probabilities associated with the set Γ.  Γ-Maximin fails to choose Bayes’ 
solutions to hypothetical decisions, with the consequence that its hypothetical preferences 
do not link together in agreement with the law of total probability.   This allows for a 
difference between E-admissibility and Γ-Maximin over the value of (cost-free) new 
information, as I discuss next. 
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3.2 E-admissibility and Value of  New Information.   In Sequential Example 1, we found that 
Γ-Maximin requires a negative value for new information –  so that a decision maker using 
that decision rule will even pay to avoid learning data prior to making a terminal decision.  
Moreover, in that same example, we saw that a decision maker using E-admissibility may 
respect the value of new (cost free) information, prior to making a terminal decision.   
 
However, in general with E-admissibility, the value of new information in sequential 
decisions depends upon values reflected in secondary (“security”) considerations.  For 
example, consider the following modified version of Sequential Example 1 obtained by 
deleting option Dr. 
  

Sequential Example 1 (modified): Construct a sequential decision problem 
involving these options from Example 1, as follows.  At the initial choice node, there are 
three options, the first two of which are terminal and the third is sequential:  

  (1)  the status quo – a terminal option 
(2) the opportunity to purchase D at a cost of 0.4 units – a terminal option. 
(3) the opportunity to learn the outcome of the mixing variable {Heads, Tails}, 

and then either to purchase D at a cost of 0.35 units or to receive 0.05 units 
outright – a sequential option involving hypothetical preferences. 

 
The figure, below, provides a schematic illustration of this choice problem. 
 

A second Sequential Decision Involving the Value of New Information 
 

Status quo 

D - .40 
1
2 

3

H

T

3.1

3.2 

+0.05 

D - .35

3.1
+0.05

D - .35 

3.2 

 
 
As with Γ-Maximin, terminal option 1 (status quo) is E-inadmissible, as terminal option 2 
(D-.40 units) has a determinate expected utility of .10 units.  However, given the datum of 
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the mixing variable, that is given outcome Heads (or given Tails), the hypothetical 
preference between 3.1 and 3.2 makes each E-admissible.  Using Γ-Maximin as a secondary 
crieterion in this problem will result in choices identical to what Γ-Maximin alone 
recommends; namely, then 3.1 alone  will be admissible and, by backward induction, 
sequential option 3 is E-inadmissible compared with terminal option 2.  Thus, the primary 
criterion of  E-admissibility supplemented by the secondary criterion of Γ-Maximin results 
in a decision rule that is not guaranteed to respect the value of new, cost-free information.   
 
However, as shown below, there do exist secondary criteria that may be used along with E-
admissibility to produce a non-negative value for cost-free information.   Let S be a 
sequential decision problem that, as in the sequential examples above, offers the decision 
maker the opportunity to postpone a terminal decision in order instead first to conduct an 
experiment and then choose among the same terminal options.  Let P ∈  Γ be a probability 
that assigns to the experiment available in S the least added value, relative to all the 
probability distributions in Γ.  
Definition: Call such a probability P least informative for the experiment provided by S. 
 
Illustration: In the modified sequential decision problem, above, each P satisfying .4 ≤ P(E) 
≤ .6 is a least informative probability from the set Γ = {P: .25 ≤ P(E) ≤ .75}.  The expected 
utility under such a P of first learning the outcome of the mixing variable before choosing 
between options 3.1 and 3.2 is .15 units. (The optimal sequential decision under such a 
distribution P is to select 3.2 regardless the outcome of the mixing variable, with an 
expected value of .15.)  This a gain of only .05 units over the value of the terminal option 2, 
i.e., the value of D - .40, which is .10.  For example, with P(E) = .25, the optimal sequential 
decision is to choose 3.1 if Heads and 3.2 if Tails.  This has an expected value of .25 units, 
making the experiment worth .15 units – so that this distribution is not a least informative 
probability from the set Γ.  
 

Result 3.3: When E-admissibility is supplemented with the secondary criterion to 
maximize expectations with respect to a least informative distribution, then this 
lexicographic decision rule respects the value of (cost-free) information. 
Proof:  The result is immediate from the elementary fact that, with respect to each P 
∈  Γ the optimal (sequential) decision respects the value of cost-free information.  
Hence, optimizing among E-admissible decisions with respect to a least informative 
distribution respects the value of cost free information. 

 
 
4. Summary 
The discussion here contrasts two decision rules that apply when uncertainty is represented 
by a (convex) set of probabilities, Γ, rather than as in the canonical Bayes case when 
uncertainty is represented by a single probability distribution.  The Γ-Maximin decision rule, 
which ranks options by the infemum of expected utility with respect to the set Γ, satisfies 
the canonical Bayesian (EU) theory’s Ordering postulate, but at the expense of violating its 
Independence postulate.  A rival decision rule, E-admissibility, reverses this trade and 
abandons Ordering but not Independence. Neither decision rule is in jeopardy of having 
Book made against it in normal form decisions.  Each rule distinguishes extensive and 
normal forms of a decision problem.  But, since Γ-Maximin alone fails the Independence 
postulate, the rankings associated with its hypothetical preferences do not knit together in 
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accord with the law of total probabilities.  This is in contrast with the hypothetical E-
admissible preferences, which do.   
 
The upshot is that in sequential decision problems E-admissibility permits a decision maker 
(through the appropriate choice of secondary criteria) to respect the value of new 
information.  By contrast, in some sequential decision problems Γ-Maximin mandates a 
negative value for new information.  Is it not a normative failing of a decision theory that it 
mandates a negative value for cost-free learning?   
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